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Spatial heterogeneity in the environment induces variation in population 
demographic rates and dispersal patterns, which result in spatio-temporal variation 
in density and gene flow. Unfortunately, applying theory to learn about the role 
of spatial structure on populations has been hindered by the lack of mechanistic 
spatial models and inability to make precise observations of population state and 
structure. Spatial capture–recapture (SCR) represents an individual-based analytic 
framework for overcoming this fundamental obstacle that has limited the utility of 
ecological theory. SCR methods make explicit use of spatial encounter information 
on individuals in order to model density and other spatial aspects of animal popula-
tion structure, and they have been widely adopted in the last decade. We review the 
historical context and emerging developments in SCR models that enable the inte-
gration of explicit ecological hypotheses about landscape connectivity, movement, 
resource selection, and spatial variation in density, directly with individual encounter 
history data obtained by new technologies (e.g. camera trapping, non-invasive DNA 
sampling). We describe ways in which SCR methods stand to advance the study of 
animal population ecology.

Introduction

Understanding factors influencing natural variation in population size and structure, 
demographic rates, and movement has long been a central research focus for popu-
lation ecologists. Despite well-developed theories over the last half century demon-
strating the importance of spatial structure in shaping spatio-temporal population 
dynamics (Huffaker 1958, Hanski 1999, Ellner et al. 2001), the field of population 
ecology remains, by and large, unconcerned about within-population spatial processes 
and their effects on populations. Ecologists routinely study such processes as how 
individuals use space within their home range, how they perceive connectivity of the 
landscape, interact with other individuals of the same or other species and how survival 
or recruitment might be impacted by landscape heterogeneity. However, the popula-
tion level implications of these processes are not widely studied. Instead the focus is at 
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the individual level, often by studying only a few individuals, 
with no accounting for how those individuals are sampled 
from the population. Extending inferences from the individ-
ual to the population is not straightforward and in some cases 
not even possible without a formal statement of a population 
model, and a description of the sampling process (Kéry and 
Royle 2016).

Much of what drives the spatial ecological processes 
that give rise to spatio-temporal population dynamics is 
the structure and configuration of the landscape (Turner 
et  al. 2001). In fact, linking landscape structure to eco-
logical processes is the primary focus of landscape ecology 
(Naveh and Lieberman 2013). This focus on how spatial 
structure influences ecosystem composition, structure, and 
function by definition, avoids any assumption about spa-
tial homogeneity. When related to animal populations, the 
tendency in landscape ecology is to focus on movement 
processes (Hooten et al. 2017), specifically landscape con-
nectivity (Zeller et  al. 2012) and resource selection func-
tions (Chetkiewicz and Boyce 2009, McLoughlin et  al. 
2010) rather than demographic rates and population state 
variables that are of interest in population ecology. Popu-
lation and landscape ecology offer alternative, yet equally 
important approaches for understanding spatio-temporal 
dynamics, yet a consistent theory or quantitative framework 
linking spatial landscape structure and population ecology 
does not yet exist.

The ecological theory underpinning landscape and popu-
lation ecology is well-developed (Tilman and Kareiva 1997, 
Kot 2001, Turner et al. 2001, Williams et al. 2002, Getz and 
Saltz 2008, Allen and Singh 2016), but testing theoretical 
models and predictions about spatial ecology in practice is 
both logistically and statistically challenging. One major 
impediment is the lack of general mechanistic spatial models 
that can be applied to empirical data; this precludes rigorous 
testing of theoretical predictions. Spatial point process mod-
els (Illian et al. 2008) provide a natural framework for char-
acterizing the spatial structure of populations assumed to be 
static and that can be observed with a high degree of accuracy. 
However, point process models have not been widely adopted 
in practical field studies of population ecology where indi-
viduals cannot be enumerated easily. In practice, populations 
distributed widely in space must be studied by observing a 
sample of individuals, sometimes only a very small fraction, 
at only a few time points and at only a few locations. In some 
cases, individuals can be continuously monitored (e.g. by 
telemetry, Hebblewhite and Haydon 2010), but in general 
it is not possible to observe the status of animals perfectly 
– either their demographic status, their location, or even 
whether or not they are alive. This is one of the key con-
siderations that has motivated the development and wide-
spread adoption of capture–recapture methods which are 
now ubiquitous in ecology (Williams et al. 2002, Cooch and 
White 2006).

For decades, capture–recapture methods have been the 
cornerstone of ecological statistics as applied to popula-
tion biology (Nichols 1992, Williams et al. 2002). At their 

core, capture–recapture models are the canonical class of 
models for ‘individual encounter history’ data. These data 
are obtained by capturing or encountering individuals (e.g. 
using camera traps, acoustic sampling, non-invasive genetic 
sampling, or direct physical capture), marking them, and 
observing them over time. Capture–recapture methods have 
had a profound influence on the study and understanding 
of demography in wild populations (Karanth et  al. 2006, 
Pradel et al. 2010), in advancing ecological theory (Cooch 
et  al. 2002), and informing modern conservation and 
wildlife management practices (Nichols and MacKenzie 
2004). While capture–recapture has become the standard 
sampling and analytical framework for the study of pop-
ulation processes (Williams et  al. 2002) it has advanced 
independent of and remained unconnected to the spatial 
structure of the population or the landscape within which 
populations exist. Furthermore, capture–recapture does not 
invoke any spatially explicit biological processes and thus is 
distinctly non-spatial, accounting neither for the inherent 
spatial nature of the sampling nor of the spatial distribution 
of individual encounters. This precludes the study of many 
important spatial processes and/or the emerging within-
population spatial structure that is arguably as important 
as demographic rates in population ecology. Recently devel-
oped ‘spatial’ capture–recapture (SCR) methods (Efford 
2004, Royle et  al. 2014) couple a spatio-temporal point 
process with a spatially explicit observation model which 
resolves these important criticisms and offers a significant 
advance in our ability to quantify and study spatial processes 
using encounter history data. Spatial capture–recapture rep-
resents an extension of classical capture–recapture that 
allows for both the spatial organization of sampling devices 
and the spatial information that is inherent in essentially 
all studies of animal populations, i.e. spatial encounter 
histories.

Although a relatively recent advance in the field of 
statistical ecology (Efford 2004, Borchers and Efford 
2008), the past decade has seen an explosive growth in SCR 
methodological development and applications fostered in 
part by the advent of new technologies (Box 1). Spatial cap-
ture–recapture provides a quantitative framework that links 
ecological processes at the individual and population levels. 
SCR promises the integration of models (hypotheses) of 
within-population dynamics with ‘population level’ param-
eters and dynamics. Thus, SCR has proven to be more than 
simply an extension of a technique, but has emerged as a 
flexible framework that allows ecologists to test hypotheses 
about a wide range of ecological theories including landscape 
and network connectivity (Fuller et  al. 2015, Sutherland 
et al. 2015), demography (Ergon and Gardner 2013, Whit-
tington and Sawaya 2015, Muñoz et  al. 2016), resource 
selection (Royle et al. 2013b, Proffitt et al. 2015), and move-
ment and dispersal (Borchers et  al. 2014, Lagrange et  al. 
2014, Schaub and Royle 2014, Royle et  al. 2016). While 
classical capture–recapture methods focus on population 
level quantities, SCR models allow for the ‘downscaling’ of 
population structure from coarse summaries (spatial and/or 
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demographic) into finer-scale components by the use of a 
spatially explicit individual-based point process model. By 
connecting population level attributes to individual level 
attributes that are spatially realistic, SCR unifies the fun-
damental concepts of population and landscape ecology, 
relating spatial encounters of individuals to explicit descrip-
tions of spatial structure and of how space is sampled (Box 
2 and 3).

In this review, we describe the basic elements of spatial 
capture–recapture and how SCR methods advance spatial 
population ecology by providing a unified framework that 
integrates important concepts and elements of population 
ecology and landscape ecology. As such, the framework allows 
for the study of density, movement, resource selection, land-
scape connectivity, and other spatial population processes 
using individual encounter history data. Finally, we discuss 
new directions in the study of animal populations that are 
made possible by the existence of spatially explicit capture–
recapture methods.

The elements of spatial capture–recapture

Traditional capture–recapture (CR) models were largely 
motivated by a formal statistical sampling view of how 
individuals are encountered by sampling, with little or 
no direct consideration given to the fundamental spatial 
nature of the sampling. As a result, traditional CR models 
represent, in essence, ‘fish bowl’ sampling – that is, a system 
that is devoid of any meaningful spatial context. This leads 
immediately to several important technical concerns that 
arise in the application of traditional CR to the study of 
animal populations which are necessarily spatially explicit.

One important deficiency with classical closed population 
models is the inability to directly estimate animal density 
(D), arguably the state variable of interest in the vast majority 
of animal monitoring studies (Krebs 1985, Turchin 1998). 
This is because, in almost all practical field applications, it 
is not possible to precisely define the effective area sampled 
by a set of trapping devices due to movement of individu-

Box 1. New technologies for generating spatial encounter data1

The advent of new field-based methodologies for individual identification allows researchers to collect spatial encounter information on 
individual animals without the need for physically capturing and marking them. Additionally, many of the methods are amenable to 
citizen science approaches (Dickinson et al. 2010) whereby non-professional scientists are engaged in the collection of data (e.g. camera 
traps, hair snares), providing increased spatial intensity and extent of sampling.
Camera traps: with improvements in camera technology, there are many commercially available cameras (a) with superior digital tech-
nology that provide still photographs and videos to capture species that are elusive and otherwise difficult to capture. Individuals can be 
identified from photographs for species that possess distinctive natural marks (e.g. Andean bears (b), tigers (c), wolverines (d), bobcats, 
jaguars, snow leopards, and others).

Non-invasive genetic sampling (NGS): NGS allows for the identification of individuals without direct observations via the extraction 
of DNA from samples. Genetic data can be collected from scat, hair, feathers, shed skin, saliva, and urine. Two common methods of 
obtaining genetic samples are by using devices that snag hair (i.e. hair snares) (e) and scat detection dogs (f ). These methods have been 
employed on marine and terrestrial mammals (e.g. right whales, black bear, fisher, American mink).

Bioacoustics: spatially separated microphones or hydrophones can be used to detect species that 
produce sounds for biological purposes such as defending territories, social calling, and mate attract-
ing. Recent advances in bioacoustics technologies and signal detection and recognition algorithms 
of spectrographs (g) permit the collection of sounds from species such as mammals, birds, and 
marine mammals.

1Figure credits: (a) Reconyx camera trap; (b) A. Fuller; (c) U. Karanth/WCS; (d) A. Magoun; (e) A. Fuller/C. Sun; (f ) A. Fuller;  
(g) Bioacoustics Research Program, Cornell Lab of Ornithology.
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als into and out of the region within which sampling occurs 
(Dice 1938, Hayne 1949, Wilson and Anderson 1985a, b). 
Secondly, the probability of encountering an individual is 
necessarily heterogeneous among those individuals exposed 
to sampling. For example, individuals on the periphery of a 
trapping grid should have lower probability of capture than 
individuals with home ranges on the interior of the trapping 
grid (Fig. 1). This heterogeneity in encounter probability 
has long been known to induce negative bias in estimates of 
abundance (N), and hence density (Otis et al. 1978, Karanth 
and Nichols 1998), and was one of the factors that motivated 
the development of SCR methods (Efford 2004). These (and 
other) technical limitations of the non-spatial CR framework 
arise directly as a result of a lack of spatial explicitness. On the 
other hand, SCR integrates models that describe the spatially 
explicit nature of sampling, how individuals are distributed, 
and how they use space.

SCR models assume that a population of N individuals 
is sampled and that each individual has associated with it a 
spatial location which represents its activity center which can 
be expressed by its X and Y coordinates as si  [si,X, si,Y]. The 
collection of activity centers s1,…,sN can be thought of as the 
realization of a statistical point process (Illian et  al. 2008), 
a class of probability models for characterizing the spatial 
pattern and distribution of points. This is perhaps the key 

innovation of spatial capture–recapture because it is this 
model that connects observations to much of the ecological 
theory that can be addressed by SCR. To formalize the point 
process model it is necessary to describe the probability distri-
bution function of the point locations. The simplest possible 
point process model is to assume that each of the N point 
locations are distributed uniformly in space (the ‘uniformity 
assumption’):

si ∼ Uniform(S) (1)
where S is an explicit spatial region within which sampling 
of individuals occurs, and for which inferences about den-
sity will be made. Formally this is referred to as the state-
space of the point process and is an essential component of 
a probabilistic characterization of potential activity centers, 
which represent individuals in the SCR framework. One 
important distinction to be made between SCR and classical 
CR methods is that the state-space S is an explicit component 
of the SCR model. The state-space induces an explicit model 
of heterogeneous detection probabilities which may affect 
inferences about density and, hence, population size.

The introduction of this statistical point process – that is, 
the association of a spatial coordinate with each individual 
in the population – leads naturally to two distinct concep-
tually important and powerful modifications of the classical 

Box 2. Core elements of spatial capture–recapture

Spatial encounter history data: classical capture–recapture sum-
marize spatial data and records only when each individual is 
encountered (a). In practice, data are reduced from a richer 3-d 
data structure – a record of when and where each individual was 
captured (b). Such spatial pattern data are informative about 
spatial population processes.

Encounter probability model: SCR models describe encounter 
probability as a function of the distance between a sample location 
and s, the individual’s activity center (the half-normal form is shown 
to the left). The spatial scale parameter s accommodates individual 
heterogeneity in detection due to the juxtaposition of individuals 
with detectors.

Spatially explicit point process model: encounter histories are 
modelled conditional on a latent point process describing the 
spatial distribution of individuals. The null model of uniformity 
(c) is typically applied and robust to violations. More realistic 
models allow individuals to be distributed explicitly according 
to some measurable covariate (d); •  home range centres dis-
tributed randomly with respect to a stream network (c) and in 
proportion to forest cover (d).
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capture–recapture framework which are at the core of the 
SCR method: first, we can formulate a spatial model for the 
probability that an individual is captured in each sample loca-
tion or trap xj for j  1, 2,…, J, conditional on its activity 
center rather than simply whether an individual was cap-
tured at all in a sample occasion, as is the case in traditional 
CR. Acknowledging the spatial structure of the traps means 
observations can be spatially indexed (Box 2, top panel) so 
encounter histories describe who (i), when (k) and impor-
tantly where (j) individuals were encountered, i.e. yi,j,k. Often, 
these observations are assumed to be Bernoulli outcomes:
yi,j,k ∼ Bernoulli(pi,j,k) (2)
where pi,j,k is the probability of encountering individual i 
in trap j, and occasion k. It is this model which links the 
observations (spatially indexed encounters) to the underlying 
latent point process describing biological pattern and process. 
At a minimum the encounter probability model depends on 
the distance between the trap location (xj) and the individ-
ual’s activity center (si) such as the half-normal encounter 
model (Box 2, middle panel):

pi,j,k  p0,j,k e–(1/2s2)d(xj,si)2 (3)
where p0 is the baseline encounter probability, the prob-
ability of encountering an individual at its’ activity center,  
the parameter s describes the rate at which detection 
probability declines as a function of distance, and d(xj,si) is 
the Euclidean distance between trap j and the activity center 
of individual i (Box 2, middle panel). In a spatial capture–
recapture model, the parameters to be estimated are p0, s 
and population size N or density D. We note that the param-
eter s accommodates individual heterogeneity in detectabil-
ity but, unlike classical models of heterogeneity (Otis et al. 
1978, Dorazio and Royle 2003) the parameter represents an 
explicit source of heterogeneity, due to the distance between 
individual activity or home range centers and traps.

The uniformity assumption yields what is usually referred 
to as a homogenous point process model, although very 
general models of the point process are possible. For example, 
when spatially referenced covariates, say z(s), can be identified 
that result in spatially heterogeneous density surfaces (Box 2, 

lower panel), then a standard inhomogeneous point process 
model posits that
Pr(s)∝ exp(bz(s)) (4)
where the parameter b corresponds to an explicit hypothesis: 
‘does density depend on the covariate z?’

Integrating the point process model with the CR sampling 
framework leads naturally to a direct focus on inference about 
parameters of the underlying point process, instead of the 
abstract quantity N which is devoid of spatial context. Under 
the SCR modelling framework one goal is to estimate the 
number of individuals (or activity centers) within any region 
of the state-space S. For example, we may estimate density D, 
the number of activity centers per unit area of S, or produce 
predictions of the number of points in any formal subset of S, 
or functions of the entire set of N points which might be used 
to test for spatial randomness, clustering mechanisms (Reich 
and Gardner 2014) or other point process assumptions.

For purposes of statistical estimation and inference, the 
activity centers are regarded as latent variables (i.e. as in clas-
sical random effects or mixed models, Laird and Ware 1982). 
The point process model is then equivalent to the random 
effects distribution or prior distribution. The resulting model 
is amenable to analyses by classical methods of statistical 
inference such as based on marginal likelihood (Borchers and 
Efford 2008), in which the latent variables are removed from 
the likelihood by integration, or Bayesian analysis by Mar-
kov chain Monte Carlo (MCMC; Royle and Young 2008), in 
which the activity centers are explicitly estimated along with 
other unknown parameters and random variables.

Despite the significant generalization achieved by SCR in 
the form of spatial detail, SCR models have more stringent 
data requirements. For example, spatial sampling must be 
sufficient to ensure that individuals are observed at multiple 
spatial locations. Such spatial recaptures provide direct infor-
mation about the model parameter s, or other parameters 
that might affect the distance function such as connectivity 
(Fuller et al. 2015). Moreover, sampling should occur so that 
a population of home ranges is exposed to sampling, i.e. to 
maximize the number of individuals exposed to sampling. 
Thus effective sampling entails a trade-off between spatial 

Figure 1. Left: two home ranges of individuals (gray circles) juxtaposed with a spatial sampling grid (traps) illustrating the variable exposure 
to trapping based on home range location. Right: the implied distribution of individual encounter probability for a population exposed to 
sampling by a regular grid.
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density of sampling in order to obtain spatial recaptures, 
and spatial extent of sampling to obtain a sufficient sample 
of unique individuals (Royle et al. 2014, chapter 10). Sam-
pling design studies have been considered by several authors 
including Efford and Fewster (2013), Sollmann et al. (2013) 
and Sun et al. (2014), with general guidance suggesting a trap 
spacing of about 2s (s here of the half-normal encounter 
probability model) in order to provide the optimal sample 
of spatial recaptures and unique individuals for a given fixed 
population size. When the geographic area is large relative to 
the amount of sampling effort that can be expended, cluster 
designs have been shown to be efficient. For such designs, 
clusters of a few traps having spacing near 2s produce the 
spatial recaptures, but distributing such clusters widely over 
the landscape ensure a larger sample of unique individuals. 
While data requirements for SCR may be more strenuous 
compared to ordinary CR methods, we note that to fit ordi-
nary CR models it is exactly this type of spatial data that are 
discarded (i.e. the spatial recaptures), and so in many situa-
tions, the spatial analysis is actually the more appropriate. For 
example, a black bear data set analyzed by Sun et al. (2017) 
involved 457 unique ‘individual by week by trap’ encounter 
events over a 10 week study but 408 ‘individual by week’ 
encounter events that would be used by ordinary CR models. 
Given the time and expense to collect such a data set, making 
use of the additional spatial recapture information is desir-
able.

SCR models are now routinely applied to many taxa, 
across a wide variety of systems using a range of sampling 
methodologies (Box 1). However, the utility of the model 
reaches far beyond simply estimating density and includes 
the investigation of important questions about population 
and landscape ecology which we describe next. Moreover, 
an enormous number of extensions to SCR models can 
be accommodated, both to the structure of the ecological 
processes and the types of observation method, including 
acoustic sampling (Dawson and Efford 2009), sampling 
continuous space instead of using traps (Royle and Young 
2008, Royle et al. 2011), sampling continuous time instead 
of discrete sampling intervals (Borchers et al. 2014, Dorazio 
and Karanth 2017) and modeling population dynamics such 
as survival and recruitment using individual level or state-
space formulations of classical Jolly–Seber and Cormack–
Jolly–Seber models (Gimenez et  al. 2007, Gardner et  al. 
2010). We discuss some of these extensions below.

SCR – a decade of development and 
application

As SCR methods were first appearing more than 10 yr ago 
(Efford 2004), the motivation for their development and 
use was almost exclusively as a technical device for resolving 
specific technical limitations of ordinary capture–recapture 
(Fig. 1). More generally, SCR methods have proved to be a 
flexible framework for making ecological processes explicit in 

models of individual encounter history data, and for studying 
spatial processes such as individual movement, resource selec-
tion, space usage, landscape connectivity, population dynam-
ics, spatial distribution, density and inter- and intra-specific 
interactions. Historically, researchers studied these questions 
independently, using ostensibly unrelated study designs and 
statistical procedures.

SCR for resource selection

SCR models provide a coherent framework for modeling 
both 2nd and 3rd order resource selection (Johnson 1980; 
Box 3). SCR models parameterize an explicit representation 
of this selection process in the specification of the latent point 
process model (individual activity centers s1,…,sN). While 
typical applications involve a relatively simple homogeneous 
point process model in which activity centers are distributed 
independently and uniformly over the state-space S, the SCR 
framework accommodates inhomogeneous point process 
models in which the density of activity centers varies as a 
function of explicit covariates or flexible spatial response sur-
face models (Borchers and Kidney 2014) that affect density. 
Inhomogeneous point process models show great promise 
for testing explicit hypotheses about 2nd order selection, 
understanding mechanisms that influence species density 
distribution, and developing conservation and management 
strategies with explicit abundance- or density-based objec-
tives (Sun et al. 2014, Proffitt et al. 2015, Kendall et al. 2016, 
Linden et al. 2017a).

Third order resource selection – that is, selection that 
occurs within an individual’s home range – can be mod-
eled explicitly in SCR models by accommodating habitat 
structure in the vicinity of sampling (or trap locations) as 
a covariate that affects the probability of encounter (Royle 
et  al. 2013b, Linden et  al. 2017b). Traditionally, resource 
selection was studied exclusively by telemetry, and more 
recently GPS, and because of the high cost are often based 
on a small sample of individuals observed many times. Con-
versely, SCR methods may produce a sample of many more 
individuals, and direct information about population level 
resource selection from spatial encounter data. However, 
using SCR, individuals in the population often do not need 
to be physically captured to obtain this information (e.g. 
by camera trapping). Thus, SCR provides an alternative, 
efficient, and cost effective framework for studying the 
important population process of resource selection from 
individual encounter history data for species that classical 
telemetry may be inefficient or inviable. Conversely, telem-
etry may provide much more detailed information about 
only a sample of individuals. In practice, many population 
studies employ both capture–recapture sampling and also 
telemetry of a sample of individuals. Combining these two 
data sources to develop population level models of move-
ment and resource selection is an important topic of on-
going research (Royle et  al. 2016, Linden et  al. 2017b, 
Whittington et al. 2017).
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SCR for modeling movement and dispersal

The direct linkage of the SCR encounter probability model 
to movement of an individual within its home range is 
one of the basic concepts of SCR (Royle and Young 2008, 
Borchers et  al. 2014). However, one of the key assump-
tions of most SCR methods to date is that the latent point 
locations which represent the individual activity centers are 
static variables. In a sense this is a manifestation of a type 
of population ‘closure’; individuals are allowed to move 
around in space, but their expected location is assumed 
not to change over the course of the study. Recent atten-
tion has been given to modifying the underlying state point 
process model to accommodate temporal dynamics such as 
dispersal or transience (Ergon and Gardner 2013, Schaub 
and Royle 2014). These models formally allow for the esti-
mation of survival probability that is free of biasing effects 
of dispersal whereas, classically, only ‘apparent survival’ 
has been estimated from standard capture recapture data 

(Schaub et  al. 2004). Even in populations where mortal-
ity or recruitment are absent, including a dynamic spatial 
process to account for dispersal and transience is possible by 
coupling a latent movement model with a spatial model of 
the encounter process (Royle et al. 2016). For example, to 
modify the point process model to allow for an individual’s 
activity center to shift from time t – 1 to time t we might 
accommodate this with a simple Markovian movement 
model where the difference between successive activity 
centers has variance t2:

si,t|si,t–1∼ Normal (si,t–1, t2I)

Thus, SCR has a characterization as a state-space (Patterson 
et  al. 2008) or hidden Markov model (HMM; Langrock 
et  al. 2012) with specific forms of observation model 
governed by spatial sampling and an underlying latent 
process model that describes movement of individuals on 

Box 3. Modeling resource selection with SCR

Resource selection is a multi-scale process (Johnson 
1980), determining the range of a species (1st order 
selection), the distribution of individuals within their 
range (2nd order), and the use of habitat by an indi-
vidual within its home range or territory (3rd order). 
SCR methods allow for explicit modeling of both 2nd 
and 3rd order resource selection from encounter history 
data produced from standard capture–recapture meth-
ods such as camera trapping, scat and hair sampling for 
DNA and live trapping.

2nd order resource selection is the process that governs 
the placement or location of individual activity centers. 
SCR models yield direct estimates of the distribution of 
individuals within the population (at right, tiger density 
from Gopalaswamy et al. 2012), and SCR models accom-
modate explicit models for the probability distribution 
of activity centers si, referred to as inhomogeneous point 
process models, in which the intensity function depends 
on landscape or habitat structure:

log( ( ))D s Xk sk= + ∑b b0

3rd order resource selection affects the SCR encounter 
probability model (Royle et al. 2013b). For some spatially 
explicit covariate z(x), the probability of encounter can 
be modeled as a function of both distance and measured 
covariate with parameter to be estimated:

p x s a z x b dist x s( | ) exp( ( ) ( , )).∝ ∗ − ∗

This corresponds to the kernel of standard resource selec-
tion models, providing a framework for formal integration  
of capture–recapture data with data from telemetry stud-
ies. At right, relative probability of use of a pixel com-
pared to a pixel of mean elevation for black bear (from 
Royle et al. 2013b).
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the landscape. The field of movement ecology is rapidly 
expanding (Hooten et al. 2017), and SCR offers a general 
framework for the formal study of population level dispersal, 
transience, and other types of movement from individual 
encounter history data.

Modeling landscape connectivity

One of the core elements of SCR is the model for encounter 
probability which we described above as a function of Euclid-
ean distance between activity centers and sample locations 
(Box 2). However, the Euclidean distance assumption implies 
a simplistic model of space usage – that individual home 
ranges are symmetric and stationary. In practice, we expect 
individual home ranges to be influenced by local landscape 
characteristics and structure. One approach for accommodat-
ing this landscape structure-induced asymmetry in space use 
in SCR models is the relaxation of the Euclidean distance 
assumption.

This is achieved using an alternative distance metric that 
is related to the landscape through which distance is being 

measured, thus allowing the degree of asymmetry to be esti-
mated using a model that relates the observed spatial pattern 
of observations explicitly to the measurable landscape char-
acteristics. For example, Royle et al. (2013a) suggested using 
least-cost path distance with the exception that, rather than 
being defined a priori based on opinion as is customary (Zeller 
et  al. 2012), the resistance parameters are estimated using 
standard likelihood methods based on spatial encounter his-
tories (Box 4). This idea was extended by Sutherland et  al. 
(2015) for highly structured dendritic networks, an extreme 
yet intuitive conceptual setting for investigating the utility of 
this asymmetric space use model. The major development is 
that the model of asymmetric space use can be used to jointly 
estimate density and resistance parameters yielding ecologi-
cally interesting and realistic individual home range geom-
etries which can be scaled up to the landscape-level based 
on direct estimates of the landscape structure space-use rela-
tionship (Box 4). What results is the important notion that 
ordinary encounter history data that is extensively collected in 
ecological studies with relative ease can now be used to for-
mally characterize landscape connectivity within a framework 

Box 4. Estimating landscape connectivity

Landscape structure influences local movements such that, during monitoring, the pattern of individual observations around its activ-
ity center is likely to deviate from the assumption of a circular home range (below, left). Understanding patterns of space use, and thus 
estimating encounter rates without bias, requires that the structure of ecological landscapes is explicitly accounted for. Using a least 
cost path approach, SCR allows the estimation of one or more resistance parameters, d, characterizing how movement is influenced 
by landscape structure. Euclidean distance in Eqn. 3 and Box 2 is replaced by ecological distance, decol, the length of the least cost path 
between two points (n0 and nT):

d decol T L L a a
a

T

euc a a
W

( , ) min cost( , ) ( , )
,...,

� � � � � �0 1
0

1
1

= ×+
=

+∑
where Lw(n0, nT)  {n0,…,nT} denotes any path consisting of T adjacent lines connecting adjacent pixels, and cost(na,n a  1) is a cost func-
tion which is a log linear function of the average pixel-specific covariate values:

cost
exp z exp z

a a
a a( , )

( ( )) ( ( ))
� �

� �
+

+=
+

1
1

2
d d

Estimation of the resistance parameter provides a direct measure of the strength of species–landscape interactions which has important 
implications. First, this is a model for asymmetric space use that simultaneously relaxes assumptions of symmetry and stationarity, 
allowing home range geometry to vary depending on location and local landscape structure (below, center). Secondly, for a known 
landscape, the probability of use for any pixel on the landscape can be computed given an individual’s location, i.e. individual local 
connectivity, and it follows therefore that the composite local connectivity surfaces for any collection of activity centers provides a 
model-based landscape connectivity surface (below, right) informed by the estimate of the species-landscape parameter.
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of statistical inference. Sutherland et al. (2015) defined several 
intuitive measures of landscape connectivity based on such 
upscaling based on the SCR encounter probability model to 
the landscape scale. The asymmetric space use model described 
here and in Box 4 in general, can be extended to multiple 
landscape characteristics as would be done with any log- 
linear regression model, and requires only that the landscape 
covariates are defined at the pixel level. While current appli-
cations have focused on river networks (Fuller et al. 2015), 
the approach should be highly relevant for any species for 
which one or more landscape features act to impede or facili-
tate movement (Morin et al. 2017) (e.g. extreme topographic 
variation, well-defined networks of roads and trails used by 
a species, Box 4). Moreover, SCR offers a formal model-
based solution for investigating the strength of landscape 
interactions, avoiding the need to arbitrarily prescribe resis-
tance values. The possibility exists to consider other non-
Euclidean distance metrics such as circuit distance (McRae 
2006).

Future directions of spatial capture–recapture

The relevance of SCR methods is expanding rapidly because 
these techniques allow ecologists to explicitly test hypotheses 
about the mechanisms that drive ecological phenomena 
as diverse as habitat selection, persistence of rare species, 
community assembly, invasion, and genetic diversity. The 
developments described above represent significant contri-
butions to applied population ecology despite their relative 
infancy, and we believe the potential for SCR in ecology has 
not yet been fully realized. We highlight specific and poten-
tially fruitful development areas for SCR that have the poten-
tial to make further contributions with regard to wildlife 
population sampling, and/or developing and testing ecologi-
cal hypotheses.

Landscape management and corridor design

It is possible to use SCR with individual encounter history 
data to inform landscape management decisions such as cor-
ridor and reserve design. Because SCR models provide spa-
tially explicit within-population information about density, 
they provide objective inferences about where the population 
is distributed in space and why. Therefore, SCR can serve 
as an empirical framework for characterizing the utility of 
landscapes to populations. In particular, when combined 
with explicit models of connectivity (previous section), 
spatially explicit metrics which integrate information about 
both density and connectivity (Fuller et al. 2015, Sutherland 
et al. 2015, Morin et al. 2017) can be estimated, thus provid-
ing information about quality of the landscape for maintain-
ing connectivity and also for maintaining source populations 
of important species.

Corridors are increasingly used as conservation tools, 
designed to facilitate movement of individuals between habitat 

patches, or between two nodes or habitat blocks separated by 
some distance (e.g. two protected areas) with the ultimate goal 
of maintaining landscape connectivity. In the most general 
sense, corridor design involves defining a resistance value (i.e. 
resistance of the landscape to animal movement) of each pixel 
in the landscape as a function of pixel characteristics, and then 
subsequently selecting the lowest cost pixels, typically evalu-
ated by estimating the cumulative cost of moving from one 
area to another. The resistance of a landscape is approximated 
by a ‘cost’ value, representing how difficult it is for an indi-
vidual to move through a landscape. High quality habits are 
more permeable to movement and infer lower ecological costs 
(i.e. they provide increased survival and reproduction) rela-
tive to lower quality habitat. Resistance values are most often 
based on subjective expert opinion or data from previously 
published studies (Zeller et al. 2012). These user defined resis-
tance models have been tested based on limited inference from 
few radiomarked individuals (Driezen et al. 2007). However, 
examples exist of deriving resistance values from occurrence 
probability from occupancy models (Walpole et al. 2012) or 
using a variety of different threshold values based on the most 
traversable habitat from radio-marked individuals (Poor et al. 
2012). Of importance is that these applications fail to utilize 
the information from animal movements to directly estimate 
landscape resistance values.

We are aware of only one application of using capture–
recapture data for formal inference about landscape resistance 
for a species (Fuller et al. 2015), in which effective distance 
was parameterized by least-cost path. Further, corridor con-
servation has been devoid of explicit consideration of local 
population density. SCR models allow for the simultane-
ous estimation of the two processes that are most critical to 
the conservation of spatially-structured populations, density 
and connectivity. Morin et al. (2017) derived a model-based 
estimator of landscape connectivity (i.e. density-weighted 
connectivity) that estimates both the spatial distribution 
and connectivity of individuals across a landscape. Spatial 
optimization approaches (Dilkina et  al. 2016, Önal et  al. 
2016) that maximize density-weighted connectivity would 
identify areas on the landscape that support the highest 
number of individuals and best landscape connectivity and 
would therefore have the greatest potential for application in 
corridor conservation and landscape management.

Modeling spatial interactions

The latent point process describing the spatial distribution of 
individuals is a central component of SCR methods. Param-
eterization of this point process allows encounter history data 
to be used to develop models that explicitly address theo-
ries related to competition, including territoriality (Reich 
and Gardner 2014) and maintenance of coexisting species 
and species diversity. Extending the point process model 
to account for dependencies among multiple species simul-
taneously occupying a landscape may provide an analytic 
framework for the empirical study of inter and intra-specific 
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competition and landscape level spatial structure in species 
assemblages. This should have enormous relevance in under-
standing host-pathogen and disease systems where transmis-
sion depends on local interactions of individuals and local 
density. Where individuals live and who they interact with 
are fundamental elements contributing to the dynamics of 
disease and pathogen systems.

Acoustic sampling

Acoustic sampling is emerging as a promising technology 
for sampling vocal species such as birds, anurans, marine 
mammals, and primates, and the application of these meth-
ods is increasing rapidly (Marques et  al. 2009, Blumstein 
et al. 2011). Information on signal strength and/or direction 
gives imperfect information about the source of the vocaliza-
tion although statistically pinpointing the source has been 
recognized as being analogous to inference about the activity 
center in SCR methods, and therefore SCR has been adapted 
to accommodate data obtained by acoustic sampling methods 
(Dawson and Efford 2009, Efford et al. 2009, Borchers et al. 
2015, Stevenson et  al. 2015, Kidney et  al. 2016). It seems 
probable that these technologies will become the de facto 
standard sampling method in bird and anuran population 
studies due to the increasing affordability of the technology.

Uncertain identity

Given the widespread adoption of non-invasive sampling 
technologies, which may only yield partial information on 
the identity of individual samples, it will become impor-
tant to accommodate uncertainty in individual identity into 
studies of animal populations that use individual encounter 
histories. There has been considerable attention paid to the 
problem of uncertain identity in capture–recapture (Link 
et al. 2010, Bonner and Holmberg 2013, McClintock et al. 
2013). However, such methods have been developed in the 
context of classical capture–recapture methods which ignore 
the spatial information inherent in most animal population 
sampling studies. On the other hand, for most populations 
we should expect the spatial location of samples to be infor-
mative about the uncertain identity of those samples (Chan-
dler and Royle 2013, Chandler and Clark 2014, Royle 2015, 
Augustine et al. 2016). That is, all other things being equal, 
samples that are in close spatial proximity to one another 
should more likely be of the same individual than samples 
that are far apart. Thus, dealing effectively with an uncertain 
identity of an individual is fundamentally a spatial problem 
for which SCR offers a solution.

Methods of accommodating uncertain identity and par-
tially marked populations are promising avenues for the 
formal integration of citizen science data collection with 
population ecology studies based on capture–recapture. SCR 
facilitates the use of citizen science in studies of population 
ecology because citizen science schemes naturally produce 
abundant information about individual locations which are 
potentially useful in spatial mark–resight and similar SCR 

models. Thus, involving citizens in data collection will 
produce large quantities of confirmations of species and 
their locations, but potentially no individual identity of the 
observations.

Conclusions

Two technological advances have influenced the present and 
future of animal population ecology in a way that we believe 
is more profound than any advance in quantitative ecology 
since the invention of computers. First is the development of 
new technologies for obtaining spatial encounter information 
on individuals (Box 1). These technologies have revolution-
ized applied population ecology. Simultaneous to the devel-
opment of these new field techniques has been the increasing 
spatialization of ecological process models seen in the advanc-
ing fields of landscape ecology and metapopulation ecology, 
along with the increasing utilization of statistical point pro-
cess models throughout population ecology. SCR lies at the 
convergence of these two technological advances, combining 
a spatially explicit observation model that describes data col-
lected using new technologies such as noninvasive genetics 
or camera trapping, with spatially explicit models describing 
how individuals are distributed across a landscape.

Estimating abundance or population size is one of the 
most important problems in applied ecology, permitting the 
evaluation of sophisticated questions in population dynam-
ics (Krebs 1985, Williams et  al. 2002, Sutherland et  al. 
2013) and providing necessary information for the conser-
vation and management of important species (Karanth and 
Nichols 2002). SCR has become the standard method for 
obtaining such information for many species, and is now rou-
tinely used to estimate abundance of populations of conser-
vation concern including species such as tigers (Royle et al. 
2009), grizzly bears (Efford and Mowat 2014, Kendall et al. 
2016), wolverines (Magoun et al. 2011, Box 1) and jaguars 
(Sollmann et  al. 2011). These and many other species are 
extremely difficult to capture and so non-invasive sampling 
combined with SCR methods are well suited to study these 
species. Moreover, many populations exist in such low densi-
ties that obtaining sufficient sample sizes of individuals can 
be challenging, and thus making the most efficient use of all 
data, and in particular, spatial recaptures which are discarded 
by ordinary capture–recapture, is critically important.

While SCR methods were developed originally as a tool 
for inference about animal density from capture–recapture 
data (Efford 2004) motivated by the need to address specific 
technical limitations of ordinary capture recapture methods 
(Fig. 1), they have proven to be more than simply an exten-
sion of technique. Spatial capture recapture has profoundly 
affected the manner in which capture–recapture is used in 
studies of animal populations because they allow testing of 
explicit hypotheses of core elements of population and land-
scape ecology by formally integrating technical descriptions 
of these processes with encounter history data obtained by 
sampling. SCR models include an explicit model of density 
and thus relationships can be modeled between density and 
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landscape features or other population attributes. For exam-
ple, SCR models can be used to test hypotheses related to 
density dependence in animal populations, such as the rela-
tionship between density and home range size (Efford et al. 
2015). In addition, understanding movement of individuals 
over the landscape is a key objective throughout ecology, and 
SCR enables the formal integration of explicit movement, 
dispersal, and survival models with models of density and 
other population characteristics (Ergon and Gardner 2013, 
Schaub and Royle 2014). Because SCR models are spatially 
explicit, we believe it is possible to consider explicit model-
ing of population dynamic rates as a function of local density. 
Finally, landscape connectivity is a fundamental element of 
landscape ecology and explicit models of connectivity can be 
integrated directly with models of spatial encounter history 
data within the SCR framework to provide population-level 
estimates of connectivity parameters. Fuller et  al. (2015) 
and Sutherland et al. (2015) develop SCR models in highly 
structured landscapes and demonstrate formal inference for 
an explicit model of landscape connectivity and resistance, 
estimated from individual encounter history data from a 
capture–recapture study of mink. As these applications sug-
gest, SCR can be regarded as a type of individual based model 
(IBM) (Grimm and Railsback 2005). Indeed, the underlying 
SCR ‘process model’ is the canonical IBM describing dis-
tribution and movement of individuals over the landscape. 
Therefore SCR can be viewed as an empirical statistical 
framework for connecting individual observations to formal 
individual based models which describe ecological processes 
such as distribution, resource selection and movement.

SCR not only affects how population and landscape ecol-
ogy questions can be addressed but also in the way we observe 
populations. For example, use of scat dogs to sample space 
using unstructured area searches (Thompson et  al. 2012) 
is extremely practical for studying many species and this 
method has grown rapidly in recent years. When data are 
obtained in this manner, it is imperative that the spatial struc-
ture of sampling be accounted for and SCR accommodates 
this by explicitly using GPS search lines in place of trap loca-
tions (Thompson et  al. 2012). Acoustic sampling (Dawson 
and Efford 2009) is a promising new technology for sampling 
birds and many other species. However, without a spatially 
explicit model that describes both the sampling and underly-
ing process, it is not possible to connect observed acoustic 
encounter data to meaningful biological parameters such as 
population density. Finally, SCR has potential as the frame-
work for integrating individual encounter data with inex-
pensive, broad scale auxiliary data such as from occupancy 
studies (Chandler and Clark 2014, Whittington et al. 2017) 
and potentially even citizen science programs.

At the core of science is the notion of testing theories by 
confronting models with data. At the level of the population 
this has been recognized as a promise of capture–recapture 
for several decades (Nichols 1992), but the use of capture–
recapture has not been widely used to address questions 
related to within-population spatial structure and population 

dynamics. However, SCR makes progress toward achieving 
this promise, by integrating a formal spatial model describing 
how individuals are distributed over a landscape, with a for-
mal spatial model for how the population is sampled. SCR 
enables testing explicit spatial mechanisms and processes 
and improves understanding of spatial ecology from indi-
vidual encounter history data. SCR incorporates elements of 
population structure and dynamics and explicit spatial and 
landscape structure to provide a quantitative framework that 
unifies population and landscape ecology.
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